

The Alaska Bio-mining Project

Schery Umanzor, LeeAnn Munk, Lieve Laurens, Michael S. Stekoll, Brandon Briggs, Kristy Clement, Javier Infante, and Markos Sheer

Award: DE-AR0001843

Ultra <u>high-risk</u>, <u>high reward project</u>

Recover rare earth elements (REEs) from seaweeds

Change the way in which we mine for REEs

Change the way in which we mine for REEs

True Green Energies

Project goal

Create cultivation scenarios where REE content in seaweed becomes so high that 'seaweed mining' becomes economically feasible.

Project focus

Understand the natural processes of REEs and biological **hyperaccumulation** by seaweeds.

Prince of Wales, Alaska

Former Uranium mine Exposed ore Enriched with heavy REEs Intense geochemical weathering Runoff to the ocean

Created with Datawrapper

Prince of Wales, Alaska

The Alaska Bio-mining Project

Schery Umanzor*, LeeAnn Munk, Lieve Laurens, Michael S. Stekoll, Brandon Briggs, Kristy Clement, Javier Infante, and Markos Sheer

*Schery Umanzor: sumanzor@alaska.edu

