

The New Frontier: upscaling seaweed farming

how the crop start is controlled for optimal yields

Job Schipper / SEAWISER

Seagriculture USA 2024, Ketchikan

Profile Job Schipper

Background: WUR Plant Science 1986; Seed industry; Naktuinbouw

Founder at Hortimare: 2008-2020 Projects & Consultancy: SEAWISER (<u>www.seawiser.com</u>) R&D lab: NIOZ Texel

Today advisor/developer with SEAWISER and partner in SWD Connectors: (<u>www.swdconnectors.com</u>)

Connectors

Priorities in large scale farming

- Economy: a competitive and reasonable cost and price •
- a year-round demand for biomass Product:
- a year-round production of biomass (continuous crop) • Supply:
- Site selection: offshore sites, enabling year-round farming rigs, mechanization and biotechnology
- Technology: •
- Biology: best suitable species; selected varieties \bullet
- smart planning; monitoring; risk mitigation **Operations:**
- Management:

SEALOOP model for predictability

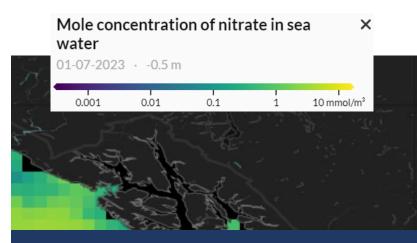
Requirements for large scale farming

Requirements for a crop with the lowest cost/kg:

- Size of the farm: > 10.000 mton ww
- Continuous crop, not just seasonal
- Robust perennial kelp species
- Low maintenance cultivation rig
- Depth 30-80 m
- High level of mechanization

Biological conditions:

- Fouling pressure low: escape from sources of spat and spores
- Nutrients, light, temperature


How to compete with fouling?

First criterium for a suitable site: nutrient flux!

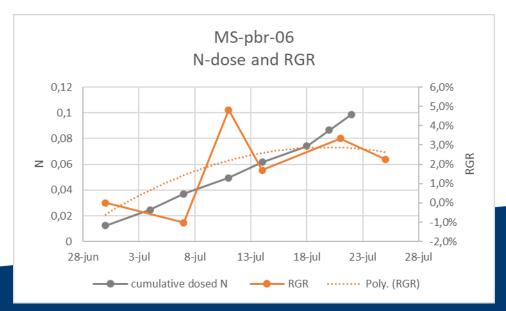
high flux - low concentration

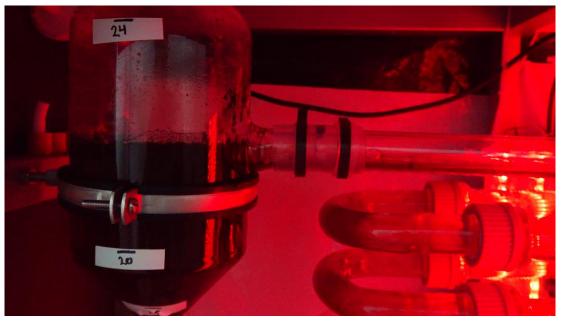
Nutrient flux versus concentration:

- Micro algae drift in a volume water: concentration-dependent
- Macro algae are fixed in a current: *flux-dependent*

Example for 1 ha:

- 50.000 kg/ha ww seaweed
- Required N: 140 kg N
- 1 mmol/m³ = 10.000.000 m³/y
- Eq to 1140 m³ per hour

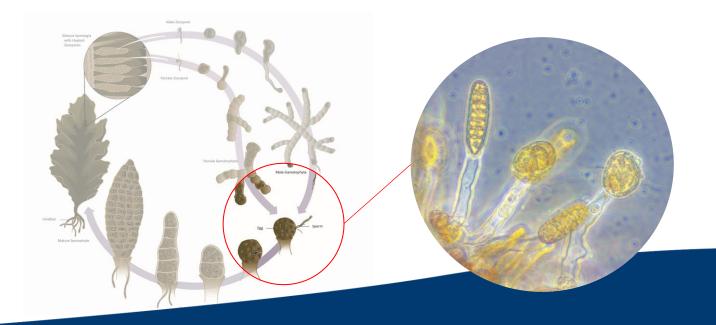


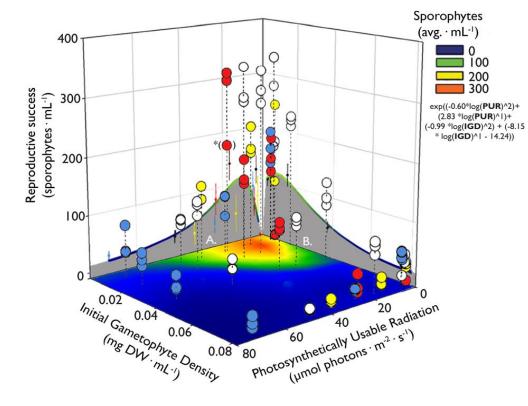

Gametophyte bulk production

• Compact bioreactor and storage concept:

3 kg gametophytes/year
 produce about 2000 ton kelp/year

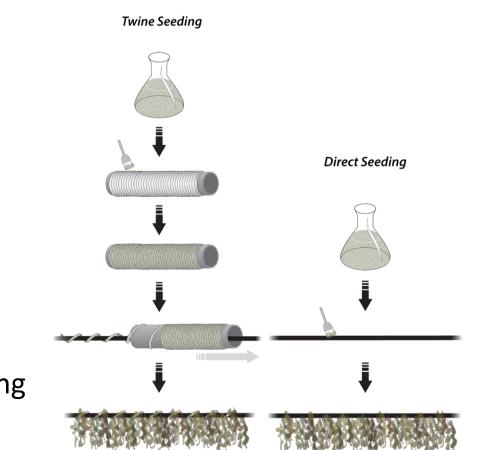
• Fully automated; low labour intensity





Gametophyte bulk induction (for direct seeding)

- Induction concept: mechanization is difficult
- SEAWISER has developed a blueprint for which we seek a partner and investor



A. Ebbing et al 2020

Twine seeding

- Twine seeding advantage:

 Quick development out at sea
 Robust seedlings
- Twine seeding disadvantage:
 - \circ Labour intensive
 - \odot High demand for space (climate room)
 - \odot Susceptible for infections/failure during hatching
 - \odot Deployment is difficult to mechanize and slow
 - \odot Remainders of twine in the crop

Direct seeding

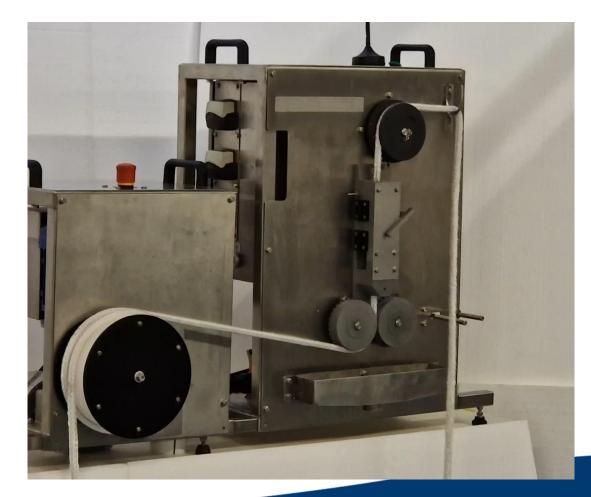
- Direct seeding advantage:

 Precision dosing of seed
 Scalable method for offshore farming
 Fast/short at sea; using weather
 opportunities
 - \circ Significant lower cost:
 - No hatching period is needed
 - Easier and more economical logistics

• Direct seeding disadvantage:

Slower initial development (lag phase)

 \circ Susceptible for competition (fouling)


Direct seeding in practice

- Specifically for large-scale farming (starting from 25 km rope)
- Continuous crop (multi-annual)
- Cope with fouling pressure by site selection and timing of seeding

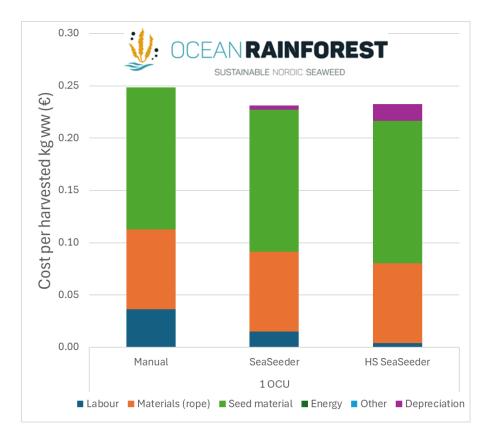
Motorized – 0,3 m/s (1 km/hr)

- Seeding ropes in continuous mode or spot seeding
- Seeding rope diameters from 10 14 mm
- Changeable seeding nozzle and wheels
- Hand-pulled or with an optional winch
- Built with quality parts for low maintenance
- Standard SEASEEDER seeds 1000 m/hr

HS-SEASEEDER - 1 m/s (3,6 km/hr)

- High-speed version of the Seaseeder
- Automated rope handling
- Automated length calculator
- Automated rope cutter (soon)

Results in practice


Cost comparison

	Manual		SeaSeeder		HS Sea Seeder	
Machine speed (m/s)		-		0.4	1.0	
People needed		5		4	2	
Spools per hour		-		2.5	4.5	
Meters per spool		-		550	550	
Meters per 8h day		5,000	9	625	17,325	+
Days needed to seed 1 OCU (82,500m)		21		11	6	
Labour cost (€)		23,003	9	,560	2,655	
Equipment cost (€)		-	20,	,000	80,000	
Depreciation years		-		8	8	
Equipment cost / year (€)		-	2,	,500	10,000	

Improved glue

Take home messages

- Prioritize the site selection criteria for optimal growth (low fouling pressure), to enable a continuous multi-annual crop, above other criteria
- Reduce the costs of 'seed' as much as possible by bulk gametophyte production and precision seeding
- Include direct seeding already in an early stage of the development of the farm to a large-scale operation to get experienced

Special thanks to:

Team of SEAWISER: Danny van Ierland and Kasper van Kraaij

