A Breeder's Perspective on Seaweed Genetic Resources and Regulations

Scott Lindell, Research Specialist Woods Hole Oceanographic Institution

Seagriculture USA September 13, 2024

Photo credit: Charles Yarish

Selectively Breeding Kelp

Unique Features of Kelp Breeding

- Parents can be maintained for decades in nursery labs
- Virtually unlimited supply of clonal parents via vegetative growth (flasks & bioreactors)
- Independence from wild "seed" timing
- More reliable performance for key traits

Objectives for genetic resource management

- Collect wild kelp
 30 to 50 individuals
 per region for bio banking & breeding
- Characterize genetic variation via DNA sequencing
- Conduct population genetic studies of kelp and other seaweed spp.

~80% of variation is within any population in Gulf of Maine Red lights and low temperature in incubators for long-term storage of "parental" stocks (gametophytes)

Giant's Staircase
 Cape Cod Canal
 Downeast Institute

Fort Stark Isles of Shoals Newcastle

Lubec Dock
 Lubec Light

10

Genomic breeding program based on gametophyte bio-banks

Genomic breeding program based on gametophyte bio-banks

Credit: Filipe Alberto, U. Wisconsin

Genomic breeding program based on gametophyte bio-banks

Using wild vs "domesticated" seed

- Annual collections may threaten some wild populations. Uncertain traits.
- Breeding programs test hundreds of <u>small</u> crosses in "common gardens"
 - > 1,000 crosses in NH (over 5 years)
 - High genetic diversity
 - 20 crosses with yield > 15 kg/m
- Conserving diversity is fundamental to long-term breeding success

OLE OCEANOGRAPHIC INSTITUTION

Genomic Selection improves Wet Wt. Yield

What we know about heat tolerance

• Gametophytes parents display a wide range in heat tolerances

Sporophyte progeny of heat-tolerant gametophytes grow bigger & healthier than intolerant ones at 20C

Genome-wide association study indicates potential candidate loci related to heat tolerance

scaffold number

Can farmed strains impact the wild?

Limited Farming vs. Now

Farmed Kelp (relative abundance)

Low risk of interbreeding impact

28 kg/m fresh (4 kg/m dry wt.)

Can farmed strains impact the wild?

VS.

Limited Farming Now

Low risk of interbreeding impact

Expansive Farming Future UU UUUUUUU UU Farmed Kelp Higher risk of interbreeding impact Wild Kelp

Non-reproductive Sugar Kelp <u>Solution</u>

> 29 Crosses over 3 years

4 crosses > 10 kg/m yield

1 cross averaged 16.5 kg/m

OCEANOGRAPHIC INSTITUTION

Access to improved strains and seed

- 1. Industry is concerned that they may be extorted or locked out, but wild seed will remain available from healthy populations
- 2. MacroBreed LLC will make non-reproductive and improved kelp affordable once the science is proven, published and certified

MARINER Breeding Project Publications

- Augyte et al. 2020. The application of flow cytometry for kelp meiospore isolation. Algal Research 46, doi.org/10.1016/j.algal.2020.101810
- Mao et al. 2020. Population genetics of sugar kelp in the Northwest Atlantic region using genome-wide markers. Frontiers in Marine Science. <u>doi.org/10.3389/fmars.2020.00694</u>
- Umanzor et al. 2021. Comparative analysis of morphometric traits of farmed sugar kelp and skinny kelp, Saccharina spp., strains from the Northwest Atlantic. Journal of the World Aquaculture Society doi.org/10.1111/jwas.12783
- Huang et al. 2022. Simulation of sugar kelp (Saccharina latissima) breeding guided by practices to prioritize accelerated research gains. G3: Genes, Genomes and Genetics. doi.org/10.1093/g3journal/jkac003
- Li et al. 2022. Skinny kelp (Saccharina angustissima) provides valuable genetics for the biomass improvement of farmed sugar kelp (Saccharina latissima). Journal of Applied Phycology. doi.org/10.1007/s10811-022-02811-1
- Huang et al. 2023. Genomic selection for sugar kelp (Saccharina latissima) with a biphasic life cycle. Frontiers in Marine Science. <u>doi.org/10.3389/fmars.2023.1040979</u>
- Vissers et al. 2023. Using sporeless sporophytes as a next step towards upscaling offshore kelp cultivation. Journal of Applied Phycology, <u>https://dx.doi.org/10.1007/s10811-023-03123-8</u>

Acknowledgments

• Funded by the U.S. Department of Energy's (DOE) ARPA-E MARINER program contract # DE-AR0000915 and World Wildlife Fund with support from the Bezos Earth Fund, National Sea Grant and Conscience Bay Company

