

Epidemiology

- Injury is the most frequent cause of death
- Approximately 20% to 40% of deaths may be preventable.

What are the common mechanisms of injury in children?

Mechanisms of Injury in Children

- Falls are the most common mechanism of injury (39%)
- Vehicular-related trauma is the next most common (38%)
- Burns
- Smaller body absorbs energy in a more concentrated area

Special Considerations

Anatomical

Weight

Airway/Breathing

Circulation

Characteristics

- Disproportionate head size
- Prone to C-spine injury
- Solid visceral injuries more likely to stop bleeding
- Pediatric patient—compensates well but deteriorates rapidly
- Bones bent but don't break
- Large surface area to mass ratio

Weight (European standard)

- Newborn 3,5 kgFirst year: 4 + 0,5 (months)
- Formula till the age of 10: 8 + (2,5 × age)
- PRIL / Breslow
 (Pediatrisch Resuscitatie en Interventie Lint)

Differences between Adult and paediatric airway

- Dimensions smaller
- Head relatively larger in infants (neutral position)
- Tongue relatively larger
- Short Jaw
- Palate long
- Long more U-shaped Epiglottis

Differences between Adult and paediatric airway

- Larynx located more cephalad
- Vocal cords angled more anteriorly (straight blade)
- Airway narrowest at the cricoid cartilage (un)cuffed tubes
- Laryngospasm

Intubation

- Laryngoscoop grip
- Straigh or bend blade
- Slight pressure on Larynx

Intubation

- Straight Blade
- Epiglottis completely out of sight
- Pressure on back side causus vagal stimulation (laryngospasm or bradycardie)
- Curved/Bend Blade
- Epiglottis and tongue ventral
- Less vagal reaction (Vallecula innervated by glossopharyngeus nerve)

Endotracheal Tube (Europe)

Age +12

Tube

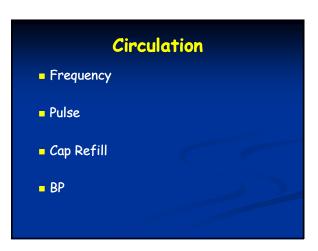
■ diameter = Age (year) + 4

length

= oral =

nasaal =

2


<u>Age</u>+15

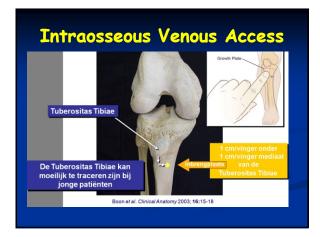
Breathing Normal ventilatory rate varies with age "Work of Breathing" Frequencies Intercostal muscle use Inspiratoiry and expiratoiry sounds Moaning Use of Axillary breathing muscles Use of "Nose"

Physiology				
Age (years)	RR (x/minute)	Pulse	Systolic BP (mm Hg)	
< 1	30-40	110-160	70-90	
1-2	25-35	100-150	80-95	
2-5	25-30	95-140	80-100	
5-12	20-25	80-120	90-110	
>12	15-20	60-100	100-120	

Breathing Efficacy of breathing (Chest-excursions, SaO2, Air passage) Pulmonary contusions can occur without rib fractures Cardiac arrest is usually preceded by respiratory failure/respiratory arrest Gastric distention may impede ventilation

Circulation Normal pulse and BP values vary with age Pulse decreases with age BP increases with age Compensate well Signs of shock more subtle BP may not fall until > 30% of total blood volume lost; late sign in hypovelemic shock Can deteriorate rapidly

Physiology				
RR (x/minute)	Pulse	Systolic BP (mm Hg)		
30-40	110-160	70-90		
25-35	100-150	80-95		
25-30	95-140	80-100		
20-25	80-120	90-110		
15-20	60-100	100-120		
	RR (x/minute) 30-40 25-35 25-30 20-25	RR (x/minute) Pulse 30-40 110-160 25-35 100-150 25-30 95-140 20-25 80-120		


Circulation (ERC Guidelines)

- Newborn life support (3:1)
- Pediatric life support Ratio (Brachial artery, CPR 15:2, position)
- Normal blood volume 70-80 cc/kg
- Resuscitation Fluids: Crystalloid 20 cc/kg

Circulation

- Up to 6% of small children in arrest or shock never have successful access achieved; 25% take > 10 minutes
- Order of priority and timing of access sites dependent on urgency of clinical situation

peripheral / cutdown / intra osseous

Intraosseous Venous Access

- Blood draws
- Venous blood gas
- Fluid bolus
- Drug administration
- Contraindicated: Fracture / Wounds

Disability

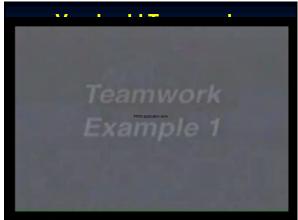
- Assessing level of consciousness may be difficult (modified GSC scale)
- Patient's activity level and response to environment may be the best indicators
- Be patient and reassuring

Expose/Environment

- Children are more prone to hypothermia
 - Larger surface area relative to overall body weight and size
 - Rapid loss of heat
- maintain body temperature with warmed fluids, blankets, heat lamps

Be Prepared

- Alert (Pediatric)Staff and trauma team
- Team Meeting:
- Nurses
- PA/Residents
- Consults (Radiologist, Anesthesia, Neurosurgon, Pediatric surgeon)
- Supervisor (who is in charge)


Be Prepared

- Use of whiteboard: MIST
- Documentation
- Evaluation (Lessons learned)

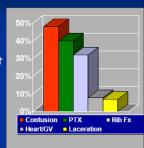
Be Prepared

- Fall of Height
- Boy 8 years (= 28 kg)
- Tube = 6 (5.5 6 6.5 cuffed)
- Fluids 560 cc Ringers lactate
- Adrenaline 2.8 cc (1:10.000) = 1 cc = 0,1 mg/kg
- Defib 150 J

Head Injury

- Present in 50% of pediatric blunt trauma
- Responsible for > 70% of pediatric traumatic deaths

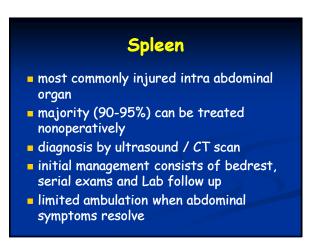
Initial management:


- ABC's, assume c-spine injury, intubate for GCS < 9
- CT scan for any altered level of consciousness or focal defect
- Maximization of cerebral perfusion pressure

Cervical spine injury

- Rare!
- Majority occur in upper 3 cervical segments C1-C3
- Increased incidence with airbag injuries
- Up to 35% of cervical cord injuries occur in the presence of normal radiographs -SCTWORA
- If non-tender, alert, and no distracting injuries, then clinical clearance acceptable
- Clearance may require flexion/extension films, CT, or MRI


Thoracic injuries


- 15% overall mortality
- compliant chest wall more prone to significant injury without rib fracture
- higher incidence of tension hemo-or pneumothorax

Liver

- commonly injured organ, frequently associated with other abdominal injuries
- diagnosis by abdominal CT scan; suggested by acute elevation of transaminases
- conservative management similar to that for splenic trauma
- Longterm complications infrequent

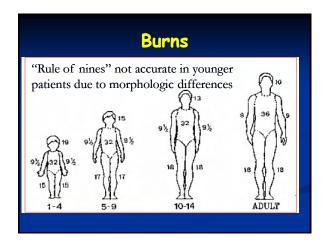
Pancreas

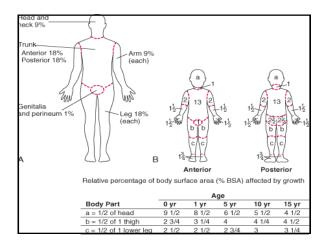
- relatively uncommon injury
- characterized by delayed diagnosis and repair
- diagnosis suggested by:
 - -marked abdominal pain and tenderness
 - -unexplained peritoneal fluid on CT scan
 - -elevated and/or rising serum amylase and lipase
 - -transection visualized on CT scan

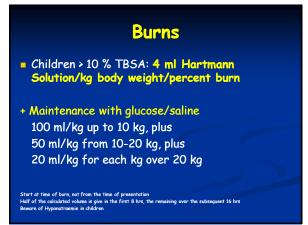
Pancreas

- injury usually located at neck of pancreas
- must rule out Abuse

Bowel


- more commonly recognized
- difficult to diagnose
 - -peritonitis
 - -unexplained fluid
 - -bowel wall thickening or "focal ileus" sign
 - -lap-belt complex
- may present with delayed SB obstruction due to posttraumatic stricture


Genitourinary


- bladder injuries more likely to be intraperitoneal
- kidney is the most commonly injured GU organ -proportionally larger
 - -more mobile, more intra abdominal position -less protective perirenal and abdominal wall
- contrast CT scan diagnostic study of choice
- most treated nonoperatively

Burns

- Leading cause of pediatric trauma deaths in the home (hot liquids). More Scald burns than flame burns
- Different body proportions
- Thinner skin (injury in infants leads to severe burn than in older children or adults)
- Different psychosocial needs
- Slower reactions to painful stimuli
- Tendency to hypothermia
- Increased fluid needs

Burns Refer to pediatric burns center for: -> 15% TBSA injury - inhalation injury - burns of hands, feet, face, genitalia - chemical or electrical burns - infected burns -children with significant preexisting conditions www.brandwonden.nl

Prevention

- Unintentional injury is the #1 killer of children age 14 and under in the U.S.
- Unintentional injury kills more children every year than any other cause including disease, homicide and suicide!
- 90% of these unintentional injuries can be prevented!

- Suspicion of non-accidental injury
- late presentation
- vague or inconsistent history from different observers
- History not compatible with injury pattern
- other or old signs of trauma
- cigarette marks, shoes and socks scalds

Summery

- Epidemiological characteristics
- Anatomical and physiological differences in the injured child
- Specifics of management of the injured child
- Childabuse