

Extract of a selection of recent studies

ACTA | Shrinkage stress of several dental composites (MPa)

This graphical presentation results of the original data from the study of ACTA published at IADR Meeting Dublin 2006 (see above).

ACTA | Shrinkage stress versus volume shrinkage

Qualitative and quantitative analysis of eluted compounds from dental composites

F.-X. Reichl^{1,2}, M. Seiss¹, A. Oxynos², M. Folwaczny¹, J. Glas¹, K. Kehe², R. Hickel¹

¹ Department of Operative Dentistry and Periodontology, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany ² Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nussbaumstr. 26, 80336 Munich Germany

Introduction

Comonomers and monomers are used as dental restorative materials (e.g. in dental composites). Unconverted compounds can be released from dental composites and can enter the body in humans. Dental composite components can be metabolized to (toxic) intermediates in the organism. This study was evaluated to qualify and to quantify eluted compounds from various dental composites. The methods of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography/mass spectrometry (LC-MS) were used.

Results

From all composites 18 different chemical compounds were found. Following comonomers were quantified (μ g/ml; mean ± s.d.; n = 3) (see table below):

Methanol-Eluates

HEMA The highest HEMA concentration was found in the eluate from the composite "Gradia" (G.C.) 500 ± 66 µg/ml.

TEGDMA | The high est TEGDMA concentration was found in the eluate from the composite "Synergy Duo Shade" (Coltène) $126 \pm 23 \ \mu g/ml$.

Water-Eluates

HEMA | HEMA was not detectable (below limit of detection) in the eluate of any composite.

TEGDMA | The highest TEGDMA concentration was found in the eluate of the composite "Venus" (Kulzer) $126 \pm 23 \mu$ g/ml.

Additives and other compounds in the eluates (water, methanol)

Following additives were found in the range of $3 - 334 \mu g/ml$ from various composites: DMABEE, TINP, HQME, BPE, BHT, HMBP, DCHP, TPSb, DMABEHE, DMABBEE a.o. Isobornylmethacrylate, BisGMA, and UDMA were not found in the eluates (water, methanol) from all composites

Discussion

Different quantities of organic compounds, eluted from various composites were found.

The toxicity of the eluted comonomers HEMA and TEGDMA is described in detail (Reichl et al. 2006, Arch. Toxicol., 80(6):370-377). The toxicity of the eluted and detected additives (e.g. cointitiators, inhibitors) is also described, but in general they have a low toxicity and for the risc assessment of dental restorative materials they are of minor relevance.

From all tested composites HEMA and TEGDMA were below limit of detection as well as in the water- and in the methanoleluates from Els extra low shrinkage.

Conclusion

Following range of the eluted and detected comonomers from dental composites was found (dest. water; decreasing elution): Venus > Gradia > Synergy Duo Shade > Tetric Evo Ceram > Premise > Grandio > **Els extra low shrinkage**

Qualitative and quantitative analysis of eluted compounds from dental composites

(Reichl FX, Seiss M, Oxynos A, Folwaczny M, Glas J, Kehe K, Hickel R (published IADR 2007)

	detected comonomers				
	dest.	water	methanol		
composites	HEMA	TEGDMA	HEMA	TEGDMA	
els extra low shrinkage®	n.d.*	n.d.*	n.d.*	n.d.*	
Grandio	n.d.*	36 ± 5	n.d.*	68 ± 12	
Premise	n.d.*	48 ± 7	n.d.*	51 ± 9	
Tetric Evo Ceram	n.d.*	57 ± 12	496 ± 77	n.d.*	
Synergy Duo Shade	n.d.*	104 ± 16	n.d.*	126 ± 23	
Gradia	n.d.*	123 ± 18	500 ± 66	62 ± 2	
Venus	n.d.*	197 ± 26	n.d.*	76 ± 7	

Figure 1

Used gas chromatography/mass spectrometer (GC-MS; upper figure) and liquid chromatography/ mass spectrometer (LC-MS; lower figure).

* n.d. = not detectable (below limit of detection)

Post-operative Sensitivity in Response to Adhesive/Composite System and Operator Skills

V. Ivanovic¹, T. SAVIC¹, J. ILIC¹, B. KARADZIC¹, O. STOJANOVIC¹, and A. SANTINI²

¹ School of Dentistry, University of Belgrade, Yugoslavia; ²The University of Edinburgh, United Kingdom

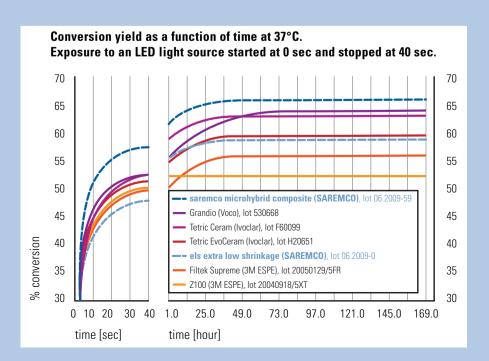
Objectives

This clinical investigation assessed [1] if there is a reduction in clinical post-operative sensitivity in teeth restored with either one of two low-shrinkage stress composites compared to teeth restored with conventional hybrid composites, and [2] the influence of operator skills on this phenomenon.

Methods

720 permanent premolar and molar teeth affected by primary carious lesions and in full physiological contact with both the adjacent and antagonist teeth were used. All cavity margins were in sound enamel. Cavities where the gingival wall was in cementum/dentine were excluded from the study. Only teeth with a cavity depth of at least 2 mm into dentine were included in further evaluation. Cavities were restored using the modified incremental technique (Lutz et al. 1986). The following 6 groups contained 120 restorations, each: (1) **els®+James-2**, (2) els® + Excite, (3) InTenSe + James-2, (4) InTenSe + Excite, (5) Tetric Ceram + Excite, and (6) Point 4+OptiBond Solo Plus. Two operators had five year (A & B), two others had over 20 years (C &D) clinical experience. Patients were assessed for postoperative sensitivity at 7 and 28 days. Assessments were conducted by an operator other than those who had placed the restoration, using a pre-prepared questionnaire. Data were statistically analysed using non-parametric chi-square and ANOVA tests.

Results


Least post-operative sensitivity was reported (6.67 %) where adhesive James-2 with two low-shrinkage composites were applied. Group 6 gave the highest score (40 %) with significant difference from other groups (p < 0.05). There was no statistical difference among groups 1, 2, 3, 4, and 5. Operator A had the highest postoperative sensitivity score (16.25 %) and was statistically different to the other three (p < 0.01).

Conclusions

Operator skills were the chief reason influencing postoperative sensitivity of composite restorations, though low polymerization shrinkage stress, and also type of adhesive had an effect.

EPFL: conversion rate of composites

Tuan Q. Nguyen, Lab. des Polymères, EPFL, IMX-LP, March 2006

Technical Data

els extra low shrinkage

190
263 mg BisGMa / BisEMa
737 mg/g BaAIBSi, silanized, ø 0,7 μm, max. 2,6 μm
> 5 min at 11′000 lux
2.8 mm in 20 s/ 2.9 mm in 40 s $^{\scriptscriptstyle 2)}$
9.0 GPa
0.21 % (24 h) / 0.60 % (7 d) ³⁾
0.03 % (24 h) / 0.09 % (7 d) ³⁾
matching VITA Shade Guide
stable according to ISO
217 % Aluminium
68 (at 0.3 mm, 7 d) 1)
81
4.2 MPa after 30 min 4)
1.3 vol % (60 s) / 2.5 vol % (240 min) $^{\scriptscriptstyle 4)}$
63 μm (60 d) (ACTA, ISO 14569-2) $^{\scriptscriptstyle 5)}$
highly viscous, homogeneous paste
homogeneous, smooth and shiny surfaces, compact structure
fulfilled

1)	Prof. Jean-M	larc MEYER,	University	of Geneva,	2002,	unpublished
----	--------------	-------------	------------	------------	-------	-------------

- ²⁾ C.J. KLEVERLAAN, A.J. DE GEE, ACTA, 2002, unpublished
- ³⁾ Dr. Maria CATTANI, Universitiy of Geneva, 2005, unpublished
- ⁴⁾ Prof. A.J. FEILZER, A.J. DE GEE, ACTA, 2005, published
- ⁵⁾ A. WERNER, A.J. DE GEE, ACTA, 2003, unpublished

cmf etch gel		
Acid content	35% Phosphoric acid	
Buffer	buffered with Phosphatesalt	
Colour	Blue	
Consistency	Medium viscous, homogeneous liquid	
pH Value	1.5	
cmf prime		
Product description	co monomer free primer	
Composition	acetone, ethanol, phosphonic acid, methacrylate	
Appearance	Clear yellowish liquid	
Consistency	liquid	
cmf bond		
Product description	solvent free, co monomer free bonding adhesive	
Composition glass	ethoxylated BisGMA, silanized Ba-glass	
Appearance	white to yellow	
Consistency	viscous liquid	
Shear bond strength	> 12 MPa	
Micro-tensile bond strength to dentine	25 MPa 1)	
Micro-tensile bond strength to enamel	31 MPa ¹⁾	
Marginal seal to enamel	100% 2)	
Marginal seal to dentine	99% ²⁾	

¹⁾ De Munck J., Van Meerbeek B. *et al.*, Leuven BIOMAT Research Cluster 2007, priminary results, unpublished

²⁾ Blunck U. Charité Berlin, 2006, unpublished in-vitro assessment