Selected robust *Tisochrysis lutea* strains for highvalue products industrial production

Fengzheng Gao 09-12-2021

European Union - Young Algaeneers Innovation Award

European Commission

EØBA

EUROPEAN ALGAE BIOMASS ASSOCIATION

ALGÆUROPE2021 07-10-december-online

Selected robust *Tisochrysis lutea* strains for high-value products industrial production

MAGNIFICENT

Microalgae As a Green source for Nutritional Ingredients for Food/Feed and Ingredients for Cosmetics by cost-Effective New Technologies

ID: 745754 Budget: 5.89 M€

Brown microalga Tisochrysis lutea

High-value compounds

Fucoxanthin (40 000-80 000 USD/kg)

- ✤ Anti-obesity ✤ Antioxidant
- ✤ Antidiabetic

*

Market

•Food •Feed •Cosmetics Pharmaceuticals

Docosahexaenoic acid (DHA; 25-75 USD/kg)

Promoting fetal development Improving cardiovascular function

** . . .

Current feedstock * Fucoxanthin

New feedstock

Seaweeds (500 tons/year; Low content, high production cost)

Alternative feedstock: *Phaeodactylum tricornutum*

Minimum production cost for purified fucoxanthin (>90% w/w) was 32,042 €/kg (Derwenskus et al., 2020)

Microalgae *Tisochrysis lutea*

Fast growth rate

- □ High fucoxanthin and DHA content
- □ No cell wall (low extraction cost)

Docosahexaenoic acid

M A G A I F I C E A T

Cold-water oceanic fish (4 000 tons/year; Shortages due to overfishing and global warming)

- I. Low productivity
- II. Limited production period (<6 months in temperate climates, optimum cultivation temperature 25-30 ℃)

* Solution: select improved strains for industrial production

* Novel flagella-less Tisochrysis lutea

Wildtype strain

[1] Improved biomass (4.5x), fucoxanthin (3.1x), and DHA (1.6x) outdoor productivities compared to wildtype strain

MAGNIFICENT

Contamination problem with wildtype strain

Wildtype

b

[3] Lower harvest costs, as the culture settles spontaneously in less than 60 min, due to its large size and lack of flagella.

Self-settling of flagella-less strain

[2] Low contamination risk (self-aggregating cells with mucus layer, 2 month' continuous production without contamination)

Winter Tisochrysis lutea for fucoxanthin and DHA production at low temperatures

1000 L, summer (20-33 ℃), Portugal

* Industrial production of robust *Tisochrysis lutea* strains

Biomass production in large tubular photobioreactors (19,000 L)

MAGNIFICENT

Biomass production in Green Walls (1000 L)

8

Biomass of wildtype and two novel *Tisochrysis lutea*

A lower fucoxanthin and DHA production cost can be expected using these two novel strains.

All publications are open access!

Bioresource Technology Volume 315, November 2020, 123894

Process optimization of fucoxanthin production with *Tisochrysis lutea*

Bioresource Technology Available online 20 November 2020, 124434 In Press, Journal Pre-proof ()

Light spectra as triggers for sorting improved strains of *Tisochrysis lutea*

Bioresource Technology Volume 325, April 2021, 124725

ogy ¹⁵

Improved fucoxanthin and docosahexaenoic acid productivities of a sorted self-settling *Tisochrysis lutea* phenotype at pilot scale

Fengzheng Gao * 🎗 🛱, Marta Sá *, Iago Teles Dominguez Cabanelas *, René H. Wijffels *, ^b, Maria J. Barbosa ¹

Production and high throughput quantification of fucoxanthin and lipids in *Tisochrysis lutea* using single-cell fluorescence

 BIOTECHNOLOGY

 Production and monitoring of biomass and fucoxanthin with brown microalgae under outdoor conditions

 New Biotechnology

 Volume 66, 25 January 2022, Pages 16-24

Bioresource Technology

olume 318, December 2020, 124104

https://magnificent-algae.eu/

VAGENINGEN

•High-effective pharmaceuticals

•Sustainable cosmetic

•Healthy food

•Cheaper feed

9

Thank you very much for your attention!

MAGNIFICENT

E B A

email: gaofengzheng@outlook.com

in Fengzheng Gao

fengzheng.gao@wur.nl

