

Dr. Cristina Andrés Barrao Lab Genetics Research Scientist KAUST

Microbial Diversity Succession During Arthrospira maxima Adaptation and Mass Cultivation Under Desertic Outdoors Conditions

Cristina Andrés-Barrao, Rawan N. Nahas, Ricardo Erik González-Portela, Claudio Fuentes-Grünewald

Introduction

- The cultivation of microalgae in seawater-based media is fundamental for fighting worldwide freshwater shortage and food security.
 - The capacity of Arthrospira maxima to tolerate a wide range of salinities [1] demonstrate that this species as an ideal candidate to be cultured in arid

Results

Table 1. Number of obtained reads per sample

Time point	Amplicon	Raw reads	Trimmed reads	Kept reads (%)	Counts	Filtered counts	Classified Domain counts (%)
то	16S V4-V5	82188	81341	98.97	78085	78015	95.91
T1	16S V4-V5	76927	76184	99.03	74604	74450	97.72
Т3	16S V4-V5	56218	55366	98.48	54759	54704	98.80
Т5	16S V4-V5	91668	90569	98.80	82857	81991	90.53
Т6	16S V4-V5	106556	105275	98.80	104550	104404	99.17
Т7	16S V4-V5	78800	77978	98.96	77057	76878	98.59
Т8	16S V4-V5	104943	103626	98.75	101487	99219	95.75
Т0	ITS rDNA	43232	42402	98.08	38594	38354	90.45
T1	ITS rDNA	56531	56082	99.21	55092	49289	87.89
Т3	ITS rDNA	34315	33914	98.83	33647	33647	99.21
Т5	ITS rDNA	52149	51729	99.19	50508	50483	97.59
Т8	ITS rDNA	69578	69005	99.18	68643	60321	87.42
то	185 SSU	10667	10323	96.78	5480	5480	53.09
T1	18S SSU	17840	17275	96.83	12306	12204	70.65
Т3	18S SSU	7885	7569	95.99	5292	5274	69.68
Т5	18S SSU	30948	30328	98.00	26370	26226	86.47
Т6	18S SSU	12894	12380	96.01	8359	8359	67.52
Т7	18S SSU	5314	5171	97.31	3465	3297	63.76
T 0	400.0011	04555					

countries.

- In their natural environment, microalgae are tighly associated to planktonic bacteria in the phycosphere [2]. In open raceways in industrial setups, together with the main microalgae culture, aquatic eukaryotes and bacteria are also present.
- The microbial diversity of natural and industrial microalgal cultures is not well known in such arid environments.

If the associated microbes contribute to the overall microalgae capacity to resist different environmental stresses it is not known.

Materials and Methods

• Micoalgal strain:

Arthrospira maxima LJGR1

UNAM Microalgae Collection Culture Isolated from Texcoco Lake, Mexico

• Growth conditions: Adaptating A. maxima to desertic outooors mass cultivation

Indoors: Closed System

Outdoors: Closed System

Outdoors: Open System

Figure 1. Rarefraction curve. Evaluation of the increase in the species richness in each sample with the increase of sequencing depth. All rarefraction curves converge reaching an horizontal asymptote, what means that the number of sequenced reads is enough and that all libraries have been successfully sequenced to represent its

Images obtained from Google search)

• Genomic workflow:

Figure 2. Taxonomoy barplots. Representation of the compositioin based on the relative abundance of different taxa at different taxonomic levels. The y-axis shows the relative abundance of each taxon. The x-axis represents the different samples being compared, ordered based on the culture adaptation stage. The taxa with the highest mean relative abundace across all samples for each taxonomic rank are shown. Other taxa and those identified as "unclassified" are shown in white (\Box) .

Figure 3. Alpha diversity (Richness). Refers to the species biodiversity in a local community. This richness metric represents the number of species observed in each sample, computed at the Genus level.

Figure 4. Beta diversity (Bray-Curtis dissilimarity). Heatmaps showing the beta diversity index at the Genus level. This diversity metric provides a way to asses the similarity or dissimilarity between two samples. A ß index equal to 0 indicates the samples are identical, whereas a ß index equal to 1 indicates the samples are completely different.

Conclusions

The sequencing depth reached during the sequencing process was enough to reveal the totallity of the taxa present in the samples. This is consequence of a global taxonomical richness rather low compared to samples from other natural

 Metabarcoding markers and primers: 										
<u>Prokaryotes</u> :										
16S rRNA hypervariable region V4-V5 515F-Y/926R	515F-Y 926R	[overhang]-GTGYCAGCMGCCGCGGTAA [overhang]-CCGYCAATTYMTTTRAGTTT	[3]							
<u>Eukaryotes</u> :										
Internal transcribed spacer 2 (ITS2) 5.8SbF/ITS4R	5.8SbF ITS4R	[overhang]-GATGAAGAACGCAGCG [overhang]-TCCTCCGCTTATTGATATGC	[4]							
18S rRNA small subunit (SSU) NF1/18 Sr2b	NF1 18 Sr2b	[overhang]-GGTGGTGCATGGCCGTTCTTAGTT [overhang]-TACAAAGGGCAGGGACGTAAT	[5]							

environments.

- The microbial diversity changes along the culture adaptation process. Competitors (algae) and predators (e.g. ciliates) appear at the latest stages of the cultivation process (open system). This is in accordance with our previous work (Alamari et al., 2023 [6]). MiSeq sequencing is a tool that can be used to complement the routine Contamination Monitoring Program in industrial setups.
- ITS libraries revealed green algae and ciliates, while 18S libraries allowed the identification of more diverse members of zooplankton, including ciliates, flagelates and amoebas. A broader range of primer pairs for both prokaryotes and eukaryotes will allow the identification of a more diverse species.

Reterences

- 1. Hong, D.D., Hien, H.T.M., Thom, L.T., Ha, N.C., Huy, L.A., Thu, N.T.H., Cuong, N., Tang, D.Y.Y., Show, P.L. (2023) Transcriptome analysis of Spirulina platensis sp. at different salinity and nutrient compositions for sustainable cultivation in Vietnam. Sustainability, 15:11906. doi: 110.3390/su151511906
- 2. Seymour, J.R., Amin, S.A., Raina, J-B., Stocker, R. (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nature Microbiology, 2:17065. doi: 10.1038/nmicrobiol.2017.65
- 3. Parada, A.E., Needham, D.M., and Fuhrman, J.A. (2015). Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, timeseries and global field samples. Applied Microbiology International, 18:1403-1414. doi: 10.1111/1462-2910.13023
- 4. Lutz, S., Procházkivá, L., Benning, L.G., Nedbalová, L., Remias, D. (2019) Evaluating high-throughput sequencing data of microalgae living in melting snow: Improvements and limitations. *Fottea*, 19:115-131. doi: 10.5507/fot.2019.003
- 5. Porazinska, D.L., Giblin-Davis, R.M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., et al. (2009). Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. *Molecular Ecology Resources*, 9:1439–1450. doi: 10.1111/j.1755-0998.2009.02611.x
- 6. Alamari, Z.I., Banjar, R.E., Fuentes-Grunewald, C. (2023) Contamination Monitoring Program of Arthrospira maxima in raceways systems in the Kingdom of Saudi Arabia. Young Alganaeneers Symposium, Faro, Portugal, 9-11 May 2023.

Development of Algal Biotechnology in Kingdom of Saudi Arabia" (DABKSA) Project Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, KSA

The project is funded by the Ministry of Environment, Water and Agriculture (MEWA), project number: 52000003916, Kingdom of Saudi Arabia.

